|  Last Updated: Aug. 3, 2012
 Home 
 Teaching 
 Classical Mechanics, Fall 2017 
 Research 
 Highlights  
 Publications 
 Journal Articles 
 Edited books, issues 
 Book Chapters 
 Proceedings 
 Other publications 
 Google Scholar 
 CV 
 The Entropy Hut (Blog) 
 
 Research group 
 Current group 
 Alumni 
 
 Journal Articles (peer reviewed)

85. Sz. Horváth, R. Gămănuț, M. Ercsey-Ravasz, L. Magrou, B. Gămănuț, D.C. Van Essen, A. Burkhalter, K. Knoblauch, Z. Toroczkai, H. Kennedy.
 Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates
 PLOS Biology 14(7)  e1002512  (2016). | doi:10.1371/journal.pbio.1002512

84. P.L. Erdős, I. Miklós, Z. Toroczkai.
 New classes of degree sequences with fast mixing swap Markov chain sampling.
 submitted,   (2016). | arXiv:1601.08224 [cs.DM, math.CO]

83. M. Varga, R. Sumi, Z. Toroczkai, M. Ercsey-Ravasz.
 Order-to-chaos transition in the hardness of random Boolean satisfiability problems.
 Phys. Rev. E 93,  052211  (2016). | arXiv:1602.05152 [cs.CC, cond-mat.stat-mech]

82. C. Orsini, M.M. Dankulov, P. Colomer-de-Simon, A. Jamakovic, P. Mahadevan, A. Vahdat, K.E. Bassler, Z. Toroczkai, M. Boguna, G. Caldarelli, S. Fortunato, D. Krioukov
 Quantifying randomness in real networks.
 Nature Communications 6,  8627  (2015). | doi:10.1038/ncomms9627 | arXiv:1505.07503 [physics.soc-ph]

81. K.E. Bassler, C.I. Del Genio, P.L. Erdős, I. Miklós, Z. Toroczkai.
 Exact sampling of graphs with prescribed degree correlations.
 New J. Phys. 17, 083052 (2015). | doi:10.1088/1367-2630/17/8/083052 | arXiv:1503.06725 [cs.DM, cond-mat.stat-mech, cs.DS, math.CO, physics.soc-ph]

80. Sz. Horvát, É. Czabarka and Z. Toroczkai.
 Reducing Degeneracy in Maximum Entropy Models of Networks.
 Phys. Rev. Lett. 114,  158701  (2015). | doi:10.1103/PhysRevLett.114.158701 | arXiv:1407.0991 [cond-mat.stat-mech]

79. P. L. Erdős, I. Miklós and Z. Toroczkai.
 A decomposition based proof for fast mixing of a Markov chain over balanced realizations of a joint degree matrix.
 SIAM J. Discr. Math.  29(1), 481-499 (2015). |doi:10.1137/130929874 | arxiv:1307.5295 [math.CO]

78. Y. Ren, M. Ercsey-Ravasz, P. Wang, M.C. Gonzalez, Z. Toroczkai.
 Predicting flows in spatial networks using a radiation model based on temporal ranges.
 Nature Communications 5, 5347 (2014). |doi: 10.1038/ncomms6347 |arXiv:1410.4849 [physics.soc-ph]

77. N.T. Markov, M.M. Ercsey-Ravasz, A.R. Ribeiro Gomes, C. Lamy, L. Magrou, J. Vezoli, P. Misery, A. Falchier, R. Quilodran, M. A. Gariel, J. Sallet, R. Gamanut, C. Huissoud, S. Clavagnier, P. Giroud, D. Sappey-Marinier, P. Barone, C. Dehay, Z. Toroczkai, K. Knoblauch, D. C. Van Essen and H. Kennedy.
 A weighted and directed interareal connectivity matrix for macaque cerebral cortex.
 Cereb. Cortex, 24(1) 17-36 (2014) 

76. N.T. Markov, M. Ercsey-Ravasz, D.C. Van Essen, K. Knoblauch, Z. Toroczkai and H. Kennedy.
 Cortical high-density counter-stream architectures.
 Science 342(6158),  1238406  (2013).

75. M. Ercsey-Ravasz, N.T. Markov, C. Lamy, D.C. Van Essen, K. Knoblauch, Z. Toroczkai, and H. Kennedy.
 A predictive network model of cerebral cortical connectivity based on a distance rule.
 Neuron 80(1), 184-197 (2013).

74. H. Kennedy, K. Knoblauch and Z. Toroczkai.
 Data coherence and completion actually do count for interareal cortical network
 Neuroimage 80, 37-45 (2013).

73. N.T. Markov, M. Ercsey-Ravasz, C. Lamy, A.R. Ribeiro Gomes, L. Magrou, P. Misery, P. Giroud, P. Barone, C. Dehay, Z. Toroczkai, K. Knoblauch, D.C. Van Essen, H. Kennedy.
 The role of distance on the speci city of inter-areal connectivity in the macaque cerebral cortex
 Proc. Natl. Acad. Sci. USA 110(13), 5187-5192 (2013).

72. C. Wang, O. Lizardo, D. Hachen, A. Strathman, Z. Toroczkai, and N. V. Chawla. (2013) in press.
 A dyadic reciprocity index for repeated interaction networks.
 Network Science (CUP) 1(01), 31-48 (2013).

71. M. Ercsey-Ravasz and Z. Toroczkai
 The Chaos Within Sudoku.
 Scientific Reports 2, 725 (2012). | doi:10.1038/srep00725 arxiv.org: 1208.0370

70. M. Ercsey-Ravasz, R. Lichtenwalter, N.V. Chawla and Z. Toroczkai
 Range-limited centrality measures in non-weighted and weighted complex networks
 Phys. Rev. E. 85, 066103 (2012). arxiv.org/1111.5382

69. M. Ercsey-Ravasz, Z. Toroczkai, Z. Lakner and J. Baranyi.
 Complexity of the International Agro-Food Trade Network and its Impact on Food Safety.
 PLoS ONE 7(5), e37810 (2012).   doi:10.1371/journal.pone.0037810 .

68. H. Kim, C.I. Del Genio, K.E. Bassler and Z. Toroczkai
 Constructing and sampling directed graphs with given degree sequence
 New J. Phys.  14, 023012  (2012). arxiv.org/1109.4590

67. M. Ercsey-Ravasz and Z. Toroczkai
 Optimization hardness as transient chaos in an analog approach to constraint satisfaction.
 Nature Physics 7, 966-970  (2011) | doi:10.1038/nphys2105, cover-page article. arxiv.org: 1208.0526v1

66. N.T. Markov, P. Misery, A. Falchier, C. Lamy, J. Vezoli, R. Quilodran, P. Giroud, M.A. Gariel, M. Ercsey-Ravasz, L.J. Pilaz, C. Huissoud, P. Barone, C. Dehay, Z. Toroczkai, D.C. Van Essen, H. Kennedy, K. Knoblauch
 Weight concistency specifies regularities of cortical networks.
 Cereb Cortex 21, 1254-1272 (2011)  doi:10.1093/cercor/bhq201

65. A. Asztalos and Z. Toroczkai
 Network discovery by generalized random walks
 Europhysics Letters 92, 50008  (2010).

64. M. Ercsey-Ravasz and Z. Toroczkai
 Centrality scaling in large networks
 Phys. Rev. Lett. 105, 038701 (2010).

63. C.I. Del Genio, H. Kim, Z. Toroczkai and K.E. Bassler
 Efficient and exact sampling of simple graphs with given arbitrary degree sequence
 PLoS ONE 5(4), e10012 (2010).   doi:10.1371/journal.pone.0010012.

62. P.L. Erdös, I. Miklós, Zoltán Toroczkai
 A simple Havel-Hakimi type algorithm to realize graphical degree sequences of directed graphs
 The Electronic Journal of Combinatorics 17(1), R66 (2010).

61. H. Kim, Z. Toroczkai, I. Miklós, P.L. Erdös and L. Székely
 Degree-based graph construction
 J. Phys. A: Math. Theor. 42, 392001 (2009). Fast Track Communication.

60. A.L. Pastore y Piontti, C.E. La Rocca, Z. Toroczkai, L.A. Braunstein, P.A. Macri and E.D. López
 Using relaxational dynamics to reduce network congestion
 New J. Phys. 10, 093007 (2008).

59. Z. Toroczkai, B. Kozma, K.E. Bassler, N.W. Hengartner, G. Korniss
 Gradient networks
 J. Phys. A: Math. Theor. 41, 155103 (2008).

58. A.E. Motter, Z. Toroczkai
 Introduction: Optimization in networks
 Chaos 17, 026101 (2007).

57. H. Guclu, G. Korniss, Z. Toroczkai
 Extreme fluctuations in noisy task-completion landscapes on scale-free networks
 Chaos 17, 026104 (2007).

56. S. Sreenivasan, R. Cohen, E. Lopez, Z. Toroczkai, H.E. Stanley
 Structural bottlenecks for communication in networks
 Phys.Rev.E. 75, 036105 (2007).

55. Z. Toroczkai, H. Guclu
 Proximity Networks and Epidemics
 Physica A 378, 68 (2007).

54. B. Danila, Y. Yu, S. Earl, J.A. Marsh, Z. Toroczkai, K.E. Bassler
 Congestion-gradient driven transport on complex networks
 Phys.Rev.E 74, 046114 (2006).

53. H. Guclu, G. Korniss, M. A. Novotny, Z. Toroczkai, and Z. Rácz
 Synchronization landscapes in small-world-connected computer networks
 Phys.Rev.E 73, 066115 (2006).

52. Z. Toroczkai and S. Eubank
 Agent-based Modeling as a Decision Making Tool: How to Halt a Smallpox Epidemic. Frontiers of Engineering, The National Academies
 Frontiers of Engineering, Reports on Leading-edge Engineering from the 2005 Symposium, National Academy of Engineering, 99-107 (2005);  reprinted as feature article in The Bridge 35(4), 22 (2005);

51. Z. Toroczkai and K.E. Bassler
 Network Dynamics: Jamming is Limited in Scale-free Systems
 Nature 428, 716 (2004).

50. S. Eubank, H. Guclu, V.S.A. Kumar, M. Marathe, A. Srinivasan, Z. Toroczkai, N. Wang
 Modelling disease outbreaks in realistic urban social networks
 Nature 429, 180 (2004).

49. T. Tél, T. Nishikawa, A.E. Motter, C. Grebogi, and Z. Toroczkai.
 Universality in active chaos
 Chaos 14, 72 (2004).

48. M. Anghel, Z. Toroczkai, K.E. Bassler, G. Korniss
 Competition-driven Network Dynamics: Emergence of a Scale-free Leadership Structure and Collective Efficiency
 Phys.Rev.Lett. 92, 058701 (2004).

47. I.J. Benczik, Z. Toroczkai and T. Tél
 Advection of Finite-size Particles in Open Flows
 Phys.Rev.E. 67, 036303 (2003).

46. I. Scheuring, T. Czárán, P. Szabó, G. Károlyi, and Z. Toroczkai
 Spatial models of prebiotic evolution: soup before pizza?
 Origins of Life and Evolution of the Biosphere 3, 319 (2003).

45. G. Korniss, M.A. Novotny, H. Guclu, Z. Toroczkai, P.A. Rikvold
 Suppressing Roughness of Virtual Times in Parallel Discrete-Event Simulations
 Science 299, 677 (2003).

44. I.Scheuring, G.Károlyi, Z. Toroczkai, T. Tél, and Á. Péntek
 Competing populations in flows with chaotic mixing
 Theor.Pop.Biol. 63(#2), 77 (2003).

43. J.M. Finn, J.D. Goette, Z. Toroczkai, M. Anghel and B.P. Wood
 Estimation of Entropies and Dimensions by Nonlinear Symbolic Time Series Analysis
 Chaos 13(#2), 444 (2003).

42. I.J. Benczik, Z. Toroczkai and T. Tél.
 Selective Sensitivity of Open Chaotic Flows on Inertial Tracer Advection: Catching Particles with a Stick
 Phys.Rev.Lett. 89, 164501 (2002).

41. S. Das Sarma, P.P. Chatraphorn, Z. Toroczkai
 Universality class of discrete solid-on-solid limited mobility nonequilibrium growth models for kinetic surface roughening
 Phys.Rev.E 65, 0366144 (2002).

40. Z. Toroczkai, T. Tél
 Introduction: Active chaotic flow.
 Chaos 12(2), 372 (2002).

39. Z. Toroczkai
 Topological classification of the Horton-Strahler index on binary trees
 Phys.Rev.E 65, 016130 (2002).

38. G. Korniss, M.A. Novotny, P.A. Rikvold, H. Guclu and Z. Toroczkai
 Going Through Rough Times: from Non-equilibrium Surface Growth to Algorithmic Scalability
 Materials Research Society Symposium Proceedings Series 700, 297 (2002).

37. G. Santoboni, T. Nishikawa, Z. Toroczkai and C. Grebogi
 Autocatalytic reactions of phase distributed active particles
 Chaos 12, 408 (2002).

36. M. Chertkov, I. Gabitov, P. Lushnikov, J. Moeser, and Z. Toroczkai
 Pinning method of pulse confinement in optical fiber with random dispersion
 J.Opt.Soc.Am. B 19, 42538 (2002).

35. T. Nishikawa, Z. Toroczkai, C. Grebogi and T. Tél
 Finite size effects on active chaotic advection
 Phys.Rev.E 65, 026216 (2002).

34. P. Punyindu, Z. Toroczkai, S. Das Sarma
 Epitaxial Mounding in Limited-Mobility Models of Surface Growth
 Phys.Rev.B 64, 205407 (2001).

33. Z. Toroczkai, G. Károlyi, Á. Péntek, T. Tél and I. Scheuring
 Autocatalytic Reactions in Systems with Hyperbolic Mixing: Exact Results for the Active Baker Map
 J.Phys.A: Math.Gen. 34, 5215 (2001).

32. Z. Toroczkai, G. Korniss
 Comment on "Extremal-Point densities of interface fluctuations in a quenched random medium"
 Phys.Rev.E 64, 048101 (2001).

31. T. Nishikawa, Z. Toroczkai, and C. Grebogi
 Advective coalescence in chaotic flows
 Phys.Rev.Lett. 87, 038301 (2001).

30. I. Miklós and Z. Toroczkai
 An improved model for statistical alignment
 Lecture Notes In Computer Science 2149, 1 (2001).

29. G. Károlyi, Á. Péntek, I. Sheuring, T. Tél, and Z. Toroczkai
 Chaotic flow: the physics of species coexistence
 Proc. Natl. Acad. Sci. USA 97, 13661 (2000).

28. I. Sheuring, G. Károlyi, Á. Péntek, T. Tél, Z. Toroczkai
 A model for resolving the plankton paradox: coexistence in open flows
 Freshwater Biology 45, 123 (2000).

27. Z. Toroczkai, G. Korniss, S. Das Sarma, R. K. P. Zia
 Extremal-point densities of interface fluctuations
 Phys.Rev.E 62, 276 (2000).

26. G. Korniss, Z. Toroczkai, M.A. Novotny, P.A. Rikvold
 From massively parallel algorithms and fluctuating time horizons to non-equilibrium surface growth
 Phys.Rev.Lett. 84, 1351 (2000).

25. S. Das Sarma, P. Punyindu, Z.Toroczkai
 Nonuniversal mound formation in nonequilibrium surface growth
 Surf. Sci. Letters 457, L369 (2000).

24. T. Tél, G. Károlyi, Á. Péntek, I. Sheuring, Z. Toroczkai, C. Grebogi, J. Kadtke
 Chaotic advection, diffusion, and reactions in open flows
 Chaos 10, 89 (2000).

23. Z. Toroczkai, E.D. Williams
 Nanoscale fluctuations at solid surfaces
 Physics Today 52, 24 (1999).

22. G. Károlyi, Á. Péntek, I. Sheuring, T. Tél, Z. Toroczkai, C. Grebogi, J. Kadtke
 Fractality, chaos, and reactions in imperfectly mixed open hydrodynamical flows
 Physica A 274, 120 (1999).

21. Z. Toroczkai, T. J. Newman, S. Das Sarma
 Sign-time distributions for interface growth
 Phys.Rev.E. 60, R1115 (1999).

20. G. Károlyi, Á. Péntek, Z. Toroczkai, T. Tél, C. Grebogi
 Chemical or biological activity in open chaotic flows
 Phys.Rev.E. 59, 5468 (1999).

19. T. J. Newman, Z. Toroczkai
 Diffusive persistence and the "sign-time" distribution
 Phys.Rev.E. 58, R2685 (1998).

18. R.K.P. Zia, Z. Toroczkai
 Random walk with a hop-over site: A novel approach to tagged diffusion and its applications
 J.Phys.A: Math.Gen. 31, 9667 (1998).

17. Z. Toroczkai, G. Károlyi, T. Tél, Á. Péntek, C.Grebogi
 Advection of active particles in open chaotic flows
 Phys. Rev. Lett. 80, 500 (1998).

16. Z. Toroczkai, G. Korniss, B. Schmittmann, R.K.P. Zia
 Brownian-vacancy mediated disordering dynamics
 Europhys.Lett. 40, 281 (1997).

15. Z. Toroczkai
 The Brownian vacancy driven walk
 Int. J. Mod. Phys. B 11, 3343 (1997).

14. Z. Toroczkai, R.K.P. Zia
 Periodic one-dimensional hopping model with one mobile directional impurity
 J. Stat. Phys. 87, 545 (1997).

13. Z. Toroczkai, G. Károlyi, Á. Péntek, T. Tél, C. Grebogi, J.A. Yorke
 Wada dye boundaries in open hydrodynamical flows
 Physica A239, 235 (1997).

12. Á. Péntek, T. Tél, Z. Toroczkai
 Transient chaotic mixing in open hydrodynamical flows
 Int. J. Bif. Chaos 6, 2619 (1996).

11. Á. Péntek, J.B. Kadtke, Z. Toroczkai
 Stabilizing chaotic vortex trajectories: An example of high dimensional control
 Phys. Lett. A224, 85 (1996).

10. Z. Toroczkai, R.K.P. Zia
 A model for electrophoresis of polymers with impurities: Exact distribution for a steady state
 Phys. Lett. A217, 97 (1996).

9. B. Sass, Z. Toroczkai
 Continuous extension of the geometric control method
 J. Phys. A: Math.Gen. 29, 3545 (1996).

8. Á. Péntek, Z. Toroczkai, T. Tél, C. Grebogi, J.A. Yorke
 Fractal boundaries in open hydrodynamical flows:Signatures of chaotic saddles
 Phys. Rev. E 51, 4076 (1995).

7. Á. Péntek, Z. Toroczkai
 Chaotic advection in the velocity field of leapfrogging vortex pairs
 J. Phys. A: Math.Gen. 28, 2191 (1995).

6. Á. Péntek, Z. Toroczkai
 Fractal tracer patterns in open hydrodynamical flows: The case of leapfrogging vortex pairs
 Fractals 3, 33 (1995).

5. Z. Toroczkai
 Geometric method for stabilizing unstable periodic orbits
 Phys. Lett. A190, 71 (1994).

4. Á. Péntek, Z. Toroczkai, D.H. Mayer, T. Tél
 A generalized Kac model as a dynamical system
 Z. Naturforsch 49a, 1212 (1994).

3. Z. Toroczkai, Á. Péntek
 Detecting phase transition in intermittent systems by using the thermodynamical formalism
 Z. Naturforsch 49a, 1235 (1994).

2. Á. Péntek, Z. Toroczkai, D.H. Mayer, T. Tél
 Kac Model from a dynamical system's point of view
 Phys. Rev. E 49, 2026 (1994).

1. Z. Toroczkai, Á. Péntek
 Classification criterion for dynamical systems in intermittent chaos
 Phys. Rev. E 48, 136 (1993).

LANL Physics Department --- College of Science --- University of Notre Dame --- Copyright©
Web Disclaimer | Web Template Design by Misha Stepanov